Hyperkähler geometry of a cubic fourfold via moduli spaces

Laura Pertusi (joint with Chunyi Li and Xiaolei Zhao)

Dipartimento di Matematica F. Enriques, Università degli Studi di Milano - Max Planck Institute of Mathematics, Bonn
Setting

A cubic fourfold Y is a smooth cubic hypersurface
in $\mathbb{P}_{\mathbb{C}}^{5}$.
Semiorthogonal decomposition (Kuznetsov):
$\quad \mathrm{D}^{\mathrm{b}}(Y)=\left\langle\mathrm{Ku}(Y), \mathcal{O}_{Y}, \mathcal{O}_{Y}(1), \mathcal{O}_{Y}(2)\right\rangle$
$\mathrm{Ku}(Y)$ is a $\mathbf{K 3}$ category.

\quad Aim

Describe the hyperkähler manifolds associated to
moduli spaces M_{d} of rational curves of degree d on Y,
as (desingularizations of) moduli spaces of Bridge-
land (semi)stable objects in Ku(Y).

Motivations

1) Explanation of the existence of the symplectic form using derived categories.
2) Birational models via wall-crossing

Key ingredient: in [1], they construct Bridgeland stability conditions on $\operatorname{Ku}(Y)$. We denote such a stability condition by $\bar{\sigma}$.

Properties of $\mathbf{K u}(Y)$

- The Serre functor of $\operatorname{Ku}(Y)$ is the shift by 2 as for the derived category of a K3 surface:
$\operatorname{Hom}(A, B[i]) \cong \operatorname{Hom}(B, A[2-i])^{*} \forall A, B \in \operatorname{Ku}(Y)$.
- (Addington, Thomas) The Mukai lattice of $\operatorname{Ku}(Y)$ is $\tilde{H}(\mathrm{Ku}(Y), \mathbb{Z}):=$
$\left\{\kappa \in K_{\text {top }}(Y): \chi\left(\left[\mathcal{O}_{Y}(i)\right], \kappa\right)=0\right.$ for every $\left.i=0,1,2\right\}$ with the weight 2 Hodge structure defined by $\tilde{H}^{2,0}(\mathrm{Ku}(Y)):=v^{-1}\left(H^{3,1}(Y)\right)$
$\tilde{H}^{1,1}(\mathrm{Ku}(Y)):=v^{-1}\left(\oplus_{p} H^{p, p}(Y)\right)$ where $v: K_{\text {top }}(\mathrm{Ku}(Y)) \rightarrow \oplus_{i} H^{i}(Y, \mathbb{Z})(i)$.
- There exist algebraic classes λ_{1}, λ_{2} in $\tilde{H}(\mathrm{Ku}(Y), \mathbb{Z})$ spanning an A_{2}-lattice.

Degree 1: Lines

The Fano variety $M_{1}:=F_{Y}$ of lines in Y is a smooth projective hyperkähler fourfold deformation equivalent to the Hilbert square on a K3 surface (Beauville, Donagi).

Theorem 1

The Fano variety of lines on Y is a moduli space of stable objects in $\operatorname{Ku}(Y)$ with respect to the Bridgeland stability condition $\bar{\sigma}$, with Mukai vector $\lambda_{1}+\lambda_{2}$.

Objects: (Macrì, Stellari) Consider the ideal sheaf \mathcal{I}_{ℓ} of a line $\ell \subset Y$

$$
\rightsquigarrow \mathcal{O}_{Y}(-1)[1] \rightarrow P_{\ell} \rightarrow \mathcal{I}_{\ell} \quad \text { where } P_{\ell} \in \operatorname{Ku}(Y) \text {. }
$$

Degree 2: Conics

Assume Y does not contain a plane. Conic curves in Y are residual to lines. $\rightsquigarrow M_{2} \rightarrow F_{Y}$ has 3-dimensional fibers.

> Degree 3: Twisted cubics

Let Y be a cubic fourfold not containing a plane.

$$
\begin{gathered}
s: M_{3} \rightarrow \mathbb{G}\left(\mathbb{P}^{3}, \mathbb{P}^{5}\right), \quad C \longmapsto\langle C\rangle \cong \mathbb{P}^{3} \\
s^{-1}\left(\mathbb{P}^{3}\right)=\operatorname{Hillb}^{g t c}(S) \longmapsto \mathbb{P}^{3}
\end{gathered}
$$

where $S=Y \cap \mathbb{P}^{3}$ is an irreducible reduced cubic surface Geometric picture:(Lehn, Lehn, Sorger, van Straten) 1) The morphism above factorizes through a \mathbb{P}^{2}-fibration $M_{3} \rightarrow M_{Y}^{\prime}$, where M_{Y}^{\prime} is a smooth and projective variety of dimension eight.
2) The locus of non CM curves in M_{Y}^{\prime} is a Cartier divisor D which can be contracted and the resulting variety M_{Y} is a smooth projective hyperkähler eightfold.

$$
\begin{gathered}
M_{3} \mathbb{P}^{2} \text {-fibr. } M_{Y}^{\prime} \hookleftarrow D \cong \mathbb{P}\left(T_{Y}\right) \\
\mathbb{G}\left(\mathbb{P}^{3}, \mathbb{P}^{5}\right) \quad{ }^{\text {contr. }} \\
M_{Y} \longleftarrow
\end{gathered}
$$

M_{Y} is equivalent by deformation to $\mathrm{K} 3^{[4]}$ (Addington, Lehn).

Theorem 2

Assume that Y does not contain a plane. Then the LLSvS eightfold M_{Y} is a moduli space of stable objects in $\operatorname{Ku}(Y)$ with respect to the Bridgeland stability condition $\bar{\sigma}$, with Mukai vector $2 \lambda_{1}+\lambda_{2}$

Objects:(Lahoz, Lehn, Macrì, Stellari) Consider the ideal sheaf $\mathcal{I}_{C / S}$ of a twisted cubic curve C in the cubic surface $S \subset Y$

$$
\rightsquigarrow F_{C}:=\operatorname{ker}\left(H^{0}\left(Y, \mathcal{I}_{C / S}(2)\right) \otimes \mathcal{O}_{Y} \xrightarrow{\mathrm{ev}} \mathcal{I}_{C / S}(2)\right) .
$$

Fact: If C is aCM, then $F_{C} \in \operatorname{Ku}(Y)$, while in the non CM case $F_{C} \notin \mathrm{Ku}(Y)$

$$
\rightsquigarrow F_{C}^{\prime}:=\mathbb{R}_{\mathcal{O}_{Y}(-1)}\left(F_{C}\right) \in \mathrm{Ku}(Y) .
$$

Now you would expect rational quartic curves. By residuality in a rational cubic scroll this is equivalent to consider:

> Elliptic quintics

Objects: Consider the ideal sheaf $\mathcal{I}_{\Gamma / Y}$ of an elliptic quintic curve $\Gamma \subset Y$

$$
\mathrm{D}^{\mathrm{b}}(Y)=\left\langle\mathcal{O}_{Y}(-2), \mathcal{O}_{Y}(-1), \operatorname{Ku}(Y), \mathcal{O}_{Y}\right\rangle .
$$

Consider

$$
P_{\Gamma}:=\mathbb{R}_{\mathcal{O}_{Y}(-1)} \mathbb{R}_{\mathcal{O}_{Y(-2)}} \mathbb{L}_{\mathcal{O}_{Y}} \mathcal{I}_{\Gamma / Y}(1) \in \operatorname{Ku}(Y)
$$

$$
v\left(P_{\Gamma}\right)=2 \lambda_{1}+2 \lambda_{2}
$$

- If $\langle\Gamma\rangle \cong \mathbb{P}^{4}, \Gamma$ is locally complete intersection and $h^{0}\left(\mathcal{O}_{\Gamma}\right)=1$, then consider the cubic threefold

$$
X:=\langle\Gamma\rangle \cap Y
$$

and

$$
0 \rightarrow \mathcal{O}_{X}(-1) \rightarrow E_{\Gamma} \rightarrow \mathcal{I}_{\Gamma / X}(1) \rightarrow 0
$$

Remark: E_{Γ} has been defined by Markushevich and Tikhomirov in relation with the intermediate
Jacobian of a cubic threefold.
Property:

$$
P_{\Gamma} \cong E_{\Gamma}
$$

- If $\langle\Gamma\rangle \cong \mathbb{P}^{3}, \Gamma$ is reduced and $h^{0}\left(\mathcal{O}_{\Gamma}\right)=1$, then consider the cubic surface $Z:=\langle\Gamma\rangle \cap Y$.

$$
\Gamma \equiv H \cap Z+\ell_{1}+\ell_{2} \text { in } Z .
$$

Property:

$$
P_{\Gamma} \cong P_{\ell_{1}} \oplus P_{\ell_{2}}
$$

Theorem 3
Assume that Y is generic. Then:

1) E_{Γ} is $\bar{\sigma}$-stable.
2) Let M be the moduli space of $\bar{\sigma}$-semistable objects
in $\operatorname{Ku}(Y)$ with Mukai vector $2 \lambda_{1}+2 \lambda_{2}$. Then

$$
\operatorname{Sing}(M) \cong \operatorname{Sym}^{2} F_{Y}
$$

and M has a symplectic resolution \tilde{M}, which is a
smooth projective hyperkähler tenfold deformation
equivalent to the example constructed by O'Grady.

Intermediate Jacobian
The twisted relative intermediate Jacobian parametrizes 1-cycles of degree 1 in the smooth hyperplane sections of Y. Voisin proved it has a flat projective compactification \tilde{J}^{T} over $\left(\mathbb{P}^{5}\right)^{*}$.

$$
\tilde{M} \longrightarrow \tilde{J}^{T}, E_{\Gamma} \mapsto c_{2}\left(E_{\Gamma}\right)
$$

Question: Are \tilde{M} and \tilde{J}^{T} isomorphic for Y very general?

References

[1] A. Bayer, M. Lahoz, E. Macrì, P. Stellari, Stability conditions on Kuznetsov components, (Appendix joint also with X. Zhao), arXiv:1703.10839
[2] C. Li, L. Pertusi, X. Zhao, Twisted cubics on cubic fourfolds and stability conditions, arXiv:1802.01134.
[3] C. Li, L. Pertusi, X. Zhao, Elliptic quintics on cubic fourfolds and O'Grady spaces, in preparation.

