Hyperkähler geometry of a cubic fourfold via moduli spaces

Laura Pertusi (joint with Chunyi Li and Xiaolei Zhao)

Dipartimento di Matematica F. Enriques, Università degli Studi di Milano - Max Planck Institute of Mathematics, Bonn

Setting

A cubic fourfold Y is a smooth cubic hypersurface in $\mathbb{P}^5_{\mathbb{C}}$.

Semiorthogonal decomposition (Kuznetsov):

 $D^{b}(Y) = \langle Ku(Y), \mathcal{O}_{Y}, \mathcal{O}_{Y}(1), \mathcal{O}_{Y}(2) \rangle$

 $\operatorname{Ku}(Y)$ is a **K3 category**.

Aim

Describe the hyperkähler manifolds associated to moduli spaces M_d of rational curves of degree d on Y, as (desingularizations of) moduli spaces of Bridgeland (semi)stable objects in Ku(Y).

Motivations

) Explanation of the existence of the symplectic form using derived categories. 2) Birational models via wall-crossing.

Key ingredient: in [1], they construct Bridgeland stability conditions on Ku(Y). We denote such a stability condition by $\bar{\sigma}$.

Properties of \mathbf{Ku}(Y)

• The **Serre functor** of Ku(Y) is the shift by 2 as for the derived category of a K3 surface:

 $\operatorname{Hom}(A, B[i]) \cong \operatorname{Hom}(B, A[2-i])^* \forall A, B \in \operatorname{Ku}(Y).$

- (Addington, Thomas) The **Mukai lattice** of Ku(Y)is $H(\operatorname{Ku}(Y), \mathbb{Z}) :=$ $\{\kappa \in K_{\text{top}}(Y) : \chi([\mathcal{O}_Y(i)], \kappa) = 0 \text{ for every } i = 0, 1, 2\}$ with the weight 2 Hodge structure defined by $\tilde{H}^{2,0}(\mathrm{Ku}(Y)) := v^{-1}(H^{3,1}(Y))$ $\widetilde{H}^{1,1}(\mathrm{Ku}(Y)) := v^{-1}(\bigoplus_p H^{p,p}(Y))$ where $v: K_{top}(Ku(Y)) \to \bigoplus_i H^i(Y, \mathbb{Z})(i)$.
- There exist algebraic classes λ_1, λ_2 in $\tilde{H}(\mathrm{Ku}(Y), \mathbb{Z})$ spanning an A_2 -lattice.

Degree 1: Lines

Theorem 1

The Fano variety of lines on Y is a moduli space of stable objects in Ku(Y) with respect to the Bridgeland stability condition $\bar{\sigma}$, with Mukai vector $\lambda_1 + \lambda_2$.

a line $\ell \subset Y$.

$$\rightsquigarrow \mathcal{O}_Y(-1)[1] \to P_\ell \to$$

fibers.

Degree 3: **Twisted cubics**

Let Y be a cubic fourfold not containing a plane.

$$s: M_3 \to \mathbb{G}(\mathbb{P}^3, \mathbb{P}^5)$$

 $s^{-1}(\mathbb{P}^3) = \mathrm{Hi}^3$

of dimension eight.

is a smooth projective hyperkähler eightfold.

Lehn).

The Fano variety $M_1 := F_Y$ of lines in Y is a smooth projective hyperkähler fourfold deformation equivalent to the Hilbert square on a K3 surface (Beauville, Donagi).

Objects: (Macrì, Stellari) Consider the ideal sheaf \mathcal{I}_{ℓ} of

 $\rightarrow \mathcal{I}_{\ell} \quad \text{where } P_{\ell} \in \mathrm{Ku}(Y).$

Degree 2: Conics

Assume Y does not contain a plane. Conic curves in Yare residual to lines. $\rightsquigarrow M_2 \rightarrow F_Y$ has 3-dimensional

> ⁵), $C \longmapsto \langle C \rangle \cong \mathbb{P}^3$ $\operatorname{Hilb}^{gtc}(S) \longmapsto \mathbb{P}^3$

where $S = Y \cap \mathbb{P}^3$ is an irreducible reduced cubic surface. Geometric picture: (Lehn, Lehn, Sorger, van Straten) 1) The morphism above factorizes through a \mathbb{P}^2 -fibration $M_3 \to M'_Y$, where M'_Y is a smooth and projective variety

2) The locus of non CM curves in M'_V is a Cartier divisor D which can be contracted and the resulting variety M_Y

> $M'_Y \longrightarrow D \cong \mathbb{P}(T_Y)$ $\stackrel{\downarrow}{\not I_V} \longleftrightarrow \stackrel{\downarrow}{V}$

 M_Y is equivalent by deformation to K3^[4] (Addington,

Theorem 2

Assume that Y does not contain a plane. Then the LLSvS eightfold M_Y is a moduli space of stable objects in Ku(Y) with respect to the Bridgeland stability condition $\bar{\sigma}$, with Mukai vector $2\lambda_1 + \lambda_2$.

Objects:(Lahoz, Lehn, Macrì, Stellari) Consider the ideal sheaf $\mathcal{I}_{C/S}$ of a twisted cubic curve C in the cubic surface $S \subset Y$.

$$\Rightarrow F_C := \ker(H^0(Y, \mathcal{I}_{C/S}(2)) \otimes \mathcal{O}_Y \xrightarrow{\mathrm{ev}} \mathcal{I}_{C/S}(2)).$$

Fact: If C is aCM, then $F_C \in Ku(Y)$, while in the non CM case $F_C \notin \mathrm{Ku}(Y)$.

$$\rightsquigarrow F'_C := \mathbb{R}_{\mathcal{O}_Y(-1)}(F_C) \in \mathrm{Ku}(Y).$$

Now you would expect **rational quartic curves**. By residuality in a rational cubic scroll this is equivalent to consider:

Elliptic quintics

Objects: Consider the ideal sheaf $\mathcal{I}_{\Gamma/Y}$ of an elliptic quintic curve $\Gamma \subset Y$.

$$D^{\mathrm{b}}(Y) = \langle \mathcal{O}_Y(-2), \mathcal{O}_Y(-1), \mathrm{Ku}(Y), \mathcal{O}_Y \rangle.$$

Consider

$$P_{\Gamma} := \mathbb{R}_{\mathcal{O}_Y(-1)} \mathbb{R}_{\mathcal{O}_Y(-2)} \mathbb{L}_{\mathcal{O}_Y} \mathcal{I}_{\Gamma/Y}(1) \in \mathrm{Ku}(Y).$$

- $v(P_{\Gamma}) = 2\lambda_1 + 2\lambda_2;$
- If $\langle \Gamma \rangle \cong \mathbb{P}^4$, Γ is locally complete intersection and $h^0(\mathcal{O}_{\Gamma}) = 1$, then consider the cubic threefold

$$X := \langle \Gamma \rangle \cap Y$$

and

$$0 \to \mathcal{O}_X(-1) \to E_\Gamma \to \mathcal{I}_{\Gamma/X}(1) \to 0.$$

Remark: E_{Γ} has been defined by Markushevich and Tikhomirov in relation with the intermediate Jacobian of a cubic threefold.

Property:

$$P_{\Gamma} \cong E_{\Gamma}.$$

• If $\langle \Gamma \rangle \cong \mathbb{P}^3$, Γ is reduced and $h^0(\mathcal{O}_{\Gamma}) = 1$, then consider the cubic surface $Z := \langle \Gamma \rangle \cap Y$.

$$\Gamma \equiv H \cap Z + \ell_1 + \ell_2 \text{ in } Z.$$

Property:

$$P_{\Gamma} \cong P_{\ell_1} \oplus P_{\ell_2}.$$

Theorem 3

Assume that Y is generic. Then:

- 1) E_{Γ} is $\bar{\sigma}$ -stable.
- 2) Let M be the moduli space of $\bar{\sigma}$ -semistable objects in Ku(Y) with Mukai vector $2\lambda_1 + 2\lambda_2$. Then

$$\operatorname{Sing}(M) \cong \operatorname{Sym}^2 F_Y$$

and M has a symplectic resolution \tilde{M} , which is a smooth projective hyperkähler tenfold deformation equivalent to the example constructed by O'Grady.

Intermediate Jacobian

The twisted relative intermediate Jacobian parametrizes 1-cycles of degree 1 in the smooth hyperplane sections of Y. Voisin proved it has a flat projective compactification \tilde{J}^T over $(\mathbb{P}^5)^*$.

 $\tilde{M} \dashrightarrow \tilde{J}^T, E_{\Gamma} \mapsto c_2(E_{\Gamma}).$

Question: Are \tilde{M} and \tilde{J}^T isomorphic for Y very general?

References

- [1] A. Bayer, M. Lahoz, E. Macrì, P. Stellari, *Stability* conditions on Kuznetsov components, (Appendix joint also with X. Zhao), arXiv:1703.10839.
- [2] C. Li, L. Pertusi, X. Zhao, Twisted cubics on cubic fourfolds and stability conditions, arXiv:1802.01134.
- [3] C. Li, L. Pertusi, X. Zhao, *Elliptic quintics on cubic* fourfolds and O'Grady spaces, in preparation.